Gas Exchange :

Principles:

- Gases move across respiratory membrane between alveolar air and pulmonary capillaries by diffusion.
- Diffusion: is the net movement of the of solute or gas molecules from a region of high concentration to a region of low concentration.
- Gas pressure : Is the forced exerted by random motion of gas molecules against a surface .
- Gas pressure is directly proportional to the temperature and the number of gas molecules occupying certain volume
- Partial pressure: Is the pressure exerted by the molecules of each gas in the mixture of gases ex : $\mathrm{PO}_{2}, \mathrm{PCO}_{2}, \mathrm{PN}_{2}$.

- Partial pressure of gases in a mixture $=$ total gas pressure X fractional composition of these gases in the mixture (Dalton law)
- Partial pressure of dissolved gases in a solution is determined by

1. Concentration of dissolved gas molecules
2. Solubility coefficient of that gas
$($ Partial pressure $=$ conc. Of dissolved gas molecules /solubility coefficient $)$
$>$ solubility of CO_{2} is 20 times that of O_{2}
$>$ partial pressure of the dissolved gas is inversely related with its solubility : a dissolved gas that is highly soluble needs low pressure to get certain concentration.

Atmospheric air composition and partial pressure of its gases :

- Atmospheric air pressure equals 760 mmHg at sea level.
- Partial pressure of gases in the atmospheric air (inspired air) $=$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{O} 2}(21 \% \times 760)=159 \mathrm{mmHg} \\
& \mathrm{P}_{\mathrm{CO} 2}(0.04 \% \times 760)=0.3 \mathrm{mmHg} \\
& \mathrm{P} \mathrm{H} 2 \mathrm{O}(0.5 \% \times 760=3.7 \mathrm{mmHg}
\end{aligned}
$$

Water Vapor pressure and its effect :

Inspired air in the respiratory passages is saturated with water vapor by the time it reaches the alveoli. The $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$ at body temp is 47 mmHg . $\rightarrow \downarrow$ partial pressure of other gases (dilute other gases).

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{O} 2}=149 \mathrm{mmHg} \downarrow \\
& \mathrm{P}_{\mathrm{CO} 2}=0.3 \mathrm{mmHg} \quad \text { (dead space air) } \\
& \mathrm{P}_{\mathrm{H} 20}=47 \mathrm{mmHg} \uparrow
\end{aligned}
$$

Composition of alveolar air

Causes of $\uparrow \mathrm{PCO}_{2}$ and $\downarrow \mathrm{PO}_{2}$ in the alveolar air:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{O}_{2}}=104 \mathrm{mmHg} \downarrow \\
& \mathrm{P}_{\mathrm{CO}_{2}}=40 \mathrm{mmHg} \uparrow \\
& \mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}=47 \mathrm{mmHg} \\
& \text { Total }=760 \mathrm{mmHg}
\end{aligned}
$$

1. O_{2} is constantly absorbed into the pulmonary blood from alveoli
2. CO_{2} is constantly diffusing from pulmonary artery to the alveoli
3. Humidification of inspired before reaching the alveoli
4. The alveolar air is only partially and slowly replaced by atmospheric air .
$>$ the importance of this slow replacement is to :
5. Prevent sudden changes in gas concentration in blood
6. Prevent excessive \uparrow or \downarrow of $\mathrm{O} 2, \mathrm{Co} 2, \mathrm{pH}$ when breathing is interrupted

Note : alveolar PO_{2} depends On alveolar ventilation rate and rate of oxygen absorption and alveolar PCO_{2} depends on alveolar ventilation rate and rate of CO 2 excretion

Respiratory membrane

1. Respiratory membrane Fluid layer lining the alveoli
2. Alveolar epithelium (95% is type I pneumocyte)
3. Epithelium basement membrane
4. Thin interstitial space

5. Capillary basement membrane
6. Capillary endothelium
[Features:

- It is a thin membrane. Sometimes the two basement membranes fused $\rightarrow \downarrow$ the respiratory membrane thickness to $0.2 \mu \mathrm{~m}$.
- Total gas exchange surface area $70 \mathrm{~m} 2 \rightarrow$ large surface area for gas exchange.
- Capillary diameter is narrow $\rightarrow \mathrm{RBC}$ pass in close contact with membrane \rightarrow fast diffusion

Factors affecting Gas Diffusion Through the Respiratory Membrane

CO 2 and O 2 are highly lipid soluble \rightarrow highly soluble in cell membrane \rightarrow limiting factor is the tissue water solubility .

Diffusion of gases through respiratory membrane Depends on :

1. Pressure difference factor
2. Membrane factor
3. Gas factor

$D=$ Rate of gas diffusion
$\mathrm{A}=$ Surface area
$\mathrm{T}=$ Thickness of the respiratory membrane

DC =diffusion coefficient
$\Delta \mathrm{P}=$ Pressure gradient,

1) Partial Pressure Difference across the membrane :
\uparrow Partial pressure gradient $\rightarrow \uparrow$ rate of diffusion.
Gases diffuse from a region of higher partial pr to a region
 of lower partial pr. Ex :
PAO_{2} (Alveolar) $=104 ; \mathrm{PO}_{2}$ in pul.artery $=40$. difference is 64 mmHg
$\mathrm{PACO}_{2}($ Alveolar $)=40 ; \mathrm{PCO}_{2}$ in pul.artery $=45 \mathrm{mmHg}$ difference is 5 mmHg
2) Surface area of the respiratory membrane:
$\uparrow \mathrm{S} . \mathrm{A} \rightarrow \uparrow$ diffusion

ex: \downarrow diffusion in emphysema and surgical resection of lung
3) the thickness of the membrane :
\uparrow thickness $\rightarrow \downarrow$ diffusion ex: pulmonary edema

4)) Diffusion Coefficient (DC) of the gas
$\uparrow \mathrm{DC} \Rightarrow \uparrow$ rate of gas diffusion

- DC $\alpha \mathrm{s} / \sqrt{M W}$.
- s : solubility, MW : molecular weight
- It is a measure of the relative rate of gas diffusion for

Normal
 different gases.

- $\mathrm{O}_{2}=1 \quad \mathrm{CO}_{2}=20 \quad$ (solubility of CO_{2} is $\mathbf{2 0}>\mathrm{O}_{2}$)

Diffusion capacity of respiratory membrane (DL_{L}):

is the volume of the gas that diffuses through the membrane

Pulmonary edema each minute for a partial pressure difference of $1 \mathbf{m m H g}$. All Factors ($\mathrm{A}, \mathrm{T}, \Delta \mathrm{P}$ and DC) affect DL

- DL for O_{2} in quite breathing is $21 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$.
\square During exercise : Surface area \uparrow by opening dormant capillary and distension of already open capillary with better V/Q ratio $\rightarrow \mathrm{D}_{\mathrm{L}} \mathrm{O}_{2} \rightarrow 65$ $\mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$
- $\mathrm{D}_{\mathrm{L}} \mathrm{CO}_{2}=400-450 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$.
\square Because of the Large difference in diffusion capacity between O_{2} and CO_{2} $\rightarrow \mathrm{O}_{2}$ diffusion is more affected than CO 2 diffusion by a disease that \downarrow diffusion capacity of the lung. ex: fibrosis.
\square CO (carbon monoxide) uses as a marker for Lung Diffusion capacity , Normal $\mathrm{D}_{\mathrm{L}} \mathrm{CO}$ at rest $=25 \mathrm{ml} / \mathrm{min} / \mathrm{Hg}$

CO_{2} and O_{2} diffusion

1. At alveoli level :

- Pulmonary veins exit the alveoli carrying oxygenated blood with $\mathrm{PO}_{2}=104 \mathrm{mmHg}, \mathrm{PCO}_{2}=40 \mathrm{mmHg}$.
- Diffusion occurs in $1 / 3$ the time needed by blood to pass the pulmonary Capillary length (Safety factor for exercise)
- Mixing with shunted blood $\rightarrow \downarrow \mathrm{PaO} 2$ to 95 mmHg in systemic circulation

2. At tissue level:

- Systemic arteries deliver O 2 to the tissues. Po_{2} decrease from 95 mmHg to 40 mmHg in systemic veins.
- CO_{2} is removed from the tissues. PCO_{2} increases from 40 mmHg to 45 mmHg in systemic veins.

Expired Air

Is a combination of dead Space and alveolar air :

1. First portion of air is the dead space air which is humidified.
2. Second portion is a mixture of dead space and alveolar air
3. Last portion Only alveolar air at end of expiration

diffusion limited and perfusion limited gas exchange :

Perfusion-limited gas exchange : is the type of gas exchange in which the rate of gas transport to the tissue can only be increased by increasing pulmonary blood flow and gas partial pressure in the pulmonary capillaries reaches equilibrium with alveolar partial pressure ex : nitrous oxide N 2 O (anesthetic gas)

- O_{2} also binds with Hb but it reaches equilibrium with alveolar PO 2 before the blood leaves the pulmonary capillaries \rightarrow perfusion limited

Diffusion limited gas exchange : is the type of gas exchange in which the rate of gas transport to the tissues is limited by the diffusion rate of the gas across the respiratory membrane and gas partial pressure in the blood does not reach equilibrium with alveolar partial pressure. ex : carbon monoxide CO.

